Беспроводные самоорганизующиеся сети. Самоорганизующаяся сеть в квартире

29.06.2013

В последние годы постоянно нарастающий теоретический интерес к самоорганизующимся сетям постепенно перешел в практическую плоскость. Сегодня многие операторы связи и регуляторы рассматривают сети относительно нового класса VANET (Vehicular Ad Hoc Network) как целевые сети для коммуникации на транспортных средствах, HANET (Home Ad hoc Network) – целевая домашняя сеть и т.д. По всей стране имеется множество опытных зон, а также примеры успешного внедрения.

Эффективность новых сетей

Как и ожидали специалисты, основной эффект при начале внедрения самоорганизующихся сетей произвели новые услуги, доселе неизвестные в инфраструктурных сетях. Поэтому одним из важных вопросов сегодня является определение места самоорганизующихся сетей в общей структуре сетей связи и доли предоставляемых ими услуг. Рассматриваются возможности создания муниципальных самоорганизующихся сетей, что со временем приведет к смещению проводных технологий к ядру сети. При этом самоорганизующиеся сети предоставляют пользователям существенно расширенный спектр услуг. На основе существующих представлений о распределении трафика в сетях связи высказывается предположение, что к 2020 году доля услуг самоорганизующихся сетей в общем объеме услуг может составить в зависимости от емкости сети до 90 %.

Самоорганизующаяся сеть в квартире

Изначально самоорганизующиеся сети рассматриваются как сети доступа. Однако, наиболее интересным в этом плане является вопрос о том, какие территории сети доступа (самоорганизующиеся) будут охватывать – квартиру, дом, микрорайон, поселок, город и т.д. Некоторые девелоперы предлагают еще на этапе строительства оборудовать необходимой инфраструктурой жилые дома. В результате, новоселы, въезжая в свои новые квартиры, имели бы возможность практически сразу воспользоваться новыми услугами связи. Уже сегодня известно о внедрении этих и аналогичных новых инфокоммуникационных технологий при строительстве ряда жилых комплексов и целых микрорайонов в Москве и Санкт-Петербурге, Новосибирске и Самаре. Эксперты отмечают в \той связи современный жилой эко-комплекс комфорт-класса в Московском районе Санкт-Петербурга, строительство которого ведется на пересечении Дунайского проспекта и Пулковского шоссе, Здесь же стоит упомянуть московский город-парк, ряд современных хилых районов Воронежа и Сочи.

Новая концепция домашней связи

Стоит отметить, что говоря о самоорганизующейся сети связи на уровне целого микрорайона, мы имеем в виду, естественно, беспроводные коммуникации. Возможность голосового общения, видеоконференц связи. высокоскоростного доступа в интернет и другие услуги в такой сети предоставляются жителям микрорайона в едином комплексе и одним оператором. Это соответствует существующему взгляду на постепенное смещение проводных технологий к ядру сети. Таким образом, в микрорайоне организуется некое беспроводное пространство, достаточно автономное для решения многих проблем его жителей.

Беспроводные самоорганизующиеся сети (другие названия: беспроводные ad hoc сети, беспроводные динамические сети) -- децентрализованные беспроводные сети, не имеющие постоянной структуры. Клиентские устройства соединяются на лету, образуя собой сеть. Каждый узел сети пытается переслать данные предназначенные другим узлам. При этом определение того, какому узлу пересылать данные, производится динамически, на основании связности сети. Это является отличием от проводных сетей и управляемых беспроводных сетей, в которых задачу управления потоками данных выполняют маршрутизаторы (в проводных сетях) или точки доступа (в управляемых беспроводных сетях).

Первыми беспроводными самоорганизующимися сетями были сети «packet radio» начиная с 1970-ых годов, финансируемые DARPA после проекта ALOHAnet.

Применение: Минимальное конфигурирование и быстрое развёртывание позволяет применять самоорганизующиеся сети в чрезвычайных ситуациях таких как природные катастрофы и военные конфликты.

В зависимости от применения беспроводные самоорганизующиеся сети могут быть разделены на:

мобильные самоорганизующиеся сети

беспроводные ячеистые сети

беспроводные сенсорные сети

Основные принципы беспроводных Ad-hoc сетей :

  • - Беспроводные сети делятся на две категории -- сети типа Infrastructure (инфраструктурные) и сети типа ad-hoc (специализированные). Для объединения нескольких компьютеров в инфраструктурную сеть используются маршрутизаторы или групповые пункты доступа. В сети ad-hoc не используются маршрутизаторы и групповые пункты доступа. Она состоит из компьютеров, которые осуществляют обмен данными непосредственно друг с другом.
  • - Ad-hoc сети - это множество беспроводных мобильных узлов связи (станций, пользователей), образующих динамическую автономную сеть при помощи полностью мобильной инфраструктуры. Узлы общаются друг с другом без вмешательства централизованных точек доступа или базовых станций, поэтому каждый узел действует и как маршрутизатор, и как конечный пользователь.
  • - Примером может служить соединение нескольких компьютеров беспроводным способом без точки доступа. Нередко такой способ соединения используется на выставках, в конференц-залах.
  • - В Интернете маршрутизаторами в пределах центральных областей сети владеют хорошо известные операторы, и поэтому предполагается некоторая степень доверия к ним. Но это предположение больше не справедливо для Ad-hoc сетей, т.к. ожидается, что все узлы, входящие в сеть, принимают участие в маршрутизации.

Режим IBSS : - Режим IBSS, также называемый ad-hoc, предназначен для соединений точка-точка. На самом деле существуют два типа режима ad-hoc. Один из них является режимом IBSS, называемый также режимом ad-hoc или IEEE ad-hoc. Этот режим определён стандартами IEEE 802.11. Второй режим называется демонстрационным режимом ad-hoc, или Lucent ad-hoc (или, иногда неправильно, режимом ad-hoc). Это старый, существовавший до появления 802.11, режим ad-hoc, и он должен использоваться только для старых сетей.

Шифрование: - Шифрование в беспроводной сети имеет важное значение, потому что у вас нет больше возможности ограничить сеть хорошо защищённой областью. Данные вашей беспроводной сети вещаются по всей окрестности, так что любой заинтересовавшийся может их считать. Вот здесь используется шифрование. Шифруя данные, посылаемые в эфир, вы делаете их прямой перехват гораздо более сложным для всех любопытных.

  • - Двумя наиболее широко применяемыми способами шифрования данных между вашим клиентом и точкой доступа являются WEP и ip-sec:
  • - WEP. WEP является сокращением от Wired Equivalency Protocol (Протокол Соответствия Проводной сети). WEP является попыткой сделать беспроводные сети такими же надёжными и безопасными, как проводные.
  • - IP-sec. ip-sec является гораздо более надёжным и мощным средством шифрования данных в сети. Этот метод определённо является предпочтительным для шифрования данных в беспроводной сети.

Утилиты: - Имеется несколько утилит, которые можно использовать для настройки и отладки беспроводной сети:

Пакет bsd-airtools

  • - Пакет bsd-airtools представляет собой полный набор инструментов, включая инструменты для проверки беспроводной сети на предмет взлома WEP-ключа, обнаружения точки и т.д.
  • - Утилиты bsd-airtools можно установить из порта net/bsd-airtools.

Утилиты wicontrol, ancontrol и raycontrol

Это инструменты, которые могут быть использованы для управления поведением адаптера беспроводной связи в сети. Wicontrol выбирается, тогда когда адаптером беспроводной сети является интерфейс wi0. Если установлено устройство беспроводного доступа от Cisco, этим интерфейсом будет an0, и тогда будет использоваться ancontrol

Поддерживаемые адаптеры: Точки доступа

Единственными адаптерами, которые на данный момент поддерживаются в режиме BSS (как точка доступа), являются те устройства, что сделаны на основе набора микросхем Prism 2, 2.5 или 3).

Клиенты 802.11a и 802.11g

  • - К сожалению, все еще много производителей, не предоставляющих схематику своих драйверов сообществу open source, поскольку эта информация считается торговым секретом. Следовательно, у разработчиков операционных систем остается два варианта: разработать драйверы долгим и сложным методом обратного инжиниринга, или использовать существующие драйверы для платформ Microsoft® Windows.
  • - Благодаря усилиям Билла Пола (wpaul),существует »прозрачная» поддержка Network Driver Interface Specification (NDIS). FreeBSD NDISulator (известный также как Project Evil) преобразует бинарный драйвер Windows так, что он работает так же как и в Windows. Эта возможность всё ещё относительно нова, но в большинстве тестов она работает адекватно.

Базовая инфраструктура современного Интернета, как известно, управляется и поддерживается десятком организаций, часть из которых подконтрольны правительству США. Далеко не всем по нраву такое положение вещей, и потому уже в течение нескольких лет IT-специалисты обсуждают альтернативные способы организации глобальных информационных сетей.

Существует две основных угрозы для безопасного информационного обмена в электронных сетях: это несанкционированный доступ к приватных данным и вмешательство в работу оборудования и устройств с целью нарушить их активность и даже вывести их из строя.

Возможный ответ на эти угрозы заключается в распространении нового типа телекоммуникаций - независимых, децентрализованных сетей, каждое устройство в которых является полноправным участником и несет свою долю ответственности за функционирование сети. Такой тип информационных сетей называется AHN (ad hoc network).

Главная проблема, которая раньше препятствовала развертыванию подобных сетей в глобальном масштабе, происходила из низкой производительности устройств и «узких» каналов связи: маршрутизация и передача необходимой для работы ad hoc-сети данных отнимает системные ресурсы и предъявляет высокие требования к пропускной способности канала, связывающего устройства между собой. Сегодня множество устройств лишены этих недостатков, а значит в ближайшие годы следует ожидать появления экспериментальных ad hoс-сетей, состоящих из тысяч устройств.

А через пару десятилетий беспроводные, или мобильные ad hoc-сети (MANETs, Mobile ad hoc networks) вполне могут стать необходимым условием для безопасной работы будущих транспортных систем, которым предстоит объединить огромное число роботизированных автомобилей, самолетов и поездов. Каждое транспортное средство в такой системе будет получать навигационную и другую информацию напрямую от своих соседей: так можно обеспечить надежность и непрерывность связи для автономного транспорта.

Самоорганизующаяся сеть – сеть, не имеющая определенной структуры, меняющаяся и распределяющая функции между узлами при подключении нового устройства, изменении характера трафика и т.д.

2. История создания и развития

История современных самоорганизующихся сетей начинается с 1970-х годов с момента создания PRNET (Packet Radio Networks), финансированные министерством обороны США. Цель создания самоорганизующихся сетей заключалась в возможности работать в сети, получать доступ к сети Интернет в любом месте, даже в движении, не полагаясь на инфраструктуру фиксированной сети.

С развитием всепроникающих сетей возникла необходимость в использовании нового типа сетей, без устойчивой структуры и способной адаптироваться к меняющимся характеристикам каналов связи. Такие стали называть самоорганизующимися. Первые коммерческие самоорганизующиеся мобильные сети были развернуты в США и Японии в 2009-2010 годах.

Самоорганизующиеся сети в зависимости от скорости самоорганизации, доли участия в ней людей делят на целевые (ad hoc) и ячеистые (mesh) сети. В переводе с латыни «ad hoc» буквально означает «для этого, специально для этого случая». Основное отличие между ad hoc и mesh сетями состоит в том, что, как правило, ad hoc относят к терминальным сетям, a Mesh - к транзитным, хотя это деление весьма условно, но принято в настоящее время.

3. Технические характеристики

Самоорганизующаяся сеть обладает следующими характеристиками:

    Самоконфигурация – распознавание и регистрирование в сети новых подключенных устройств. При этом соседние автоматически корректируют свои технические параметры (например, мощность излучения, наклон антенны и т.д.).

    Самооптимизация – адаптация параметров устройств при изменении параметров сети: количества пользователей, уровня сигнала, уровня внешних помех и др.

    Самовосстановление – автоматическое обнаружение и устранение сбоев: перераспределение функций между устройствами при выходе из строя каких-либо узлов сети для повышения отказоустойчивости сети.

Алгоритмы маршрутизации самоорганизующихся сетей:

    Проактивная маршрутизация – наличие постоянно обновляемых полных списков адресов назначения и маршрутов до них.

    Реактивная маршрутизация – построенные маршрута по необходимости, т.е. при наличии трафика предназначенного определенному адресату, с помощью опросов соседних узлов и алгоритмов обнаружения соседей.

    Гибридная маршрутизация – сочетание элементов проактивной и реактивной маршрутизации. Т.е. хранение таблицы некоторых адресатов, и последующий их опрос по требованию по мере необходимости построения иных маршрутов.

Для организации самоорганизующейся сети чаще всего используют протоколы Bluetooth, Wi-Fi, ZigBee, для маршрутизации – AODV, SAODV, ZRP, OLSR, LAR.

4. Кейсы применения

Быстрое развертывание сенсорных сетей в чрезвычайных ситуациях: например, для поиска пострадавших, анализа масштаба бедствия и т.д. В локальных сетях (сеть HANET), например, при создании системы автоматизации зданий, домов, систем локального позиционирования (RTLS).

В транспортной сфере для системы умного транспорта и умного трафика – сети VANET. В местах массового скопления людей для разгрузки базовых станций и обеспечения связи мобильных устройств напрямую без участия базовых станций (MANET).

5. Полезные ссылки

Источники:

Выше мы рассмотрели основные архитектуры нейронных сетей и принципы их создания, обучения и функционирования. Основная часть теоретических достижений в этой области связана именно с такими архитектурами. Однако существует еще два малоисследованных, но перспективных направления – это алгоритмы обучения, не требующие предоставления обучающих образцов (самообучение) и сети с обратными связями, позволяющие выделять не только пространственные, но и временные характеристики входных сигналов.

Самоорганизующиеся сети являются одним из наиболее интересных направлений в области. Такие сети способны выделять корреляции во входных данных и приводить свое состояние в соответствие с ними. Самоорганизующиеся сети способны выделять близкие входные образы так, что они вызывают возбуждение близких нейронов выходного слоя.

Демонстрационный пример «Competitive learning» показывает реализацию классификатора с использованием самоорганизующихся сетей.

Рисунок 31. Использование самоорганизующихся сетей для классификации

(Competitive learning)

Рисунок 32. Самоорганизующйся слой

Обучение сети происходит так, что при подаче на вход сети нового вектора, значительно отличающегося от существующих классов, в сети создается новый класс. Если же вектор близок к одному из существующих классов, то веса изменяются для приведения его в соответствие с новыми данными. Понятно, что для такого рода сети число классов, которые она способна выделять равно числу нейронов соревнующегося слоя. Создание сети осуществляется с помощью функции newc:

net = newc(, 2);

где первый аргумент – диапазоны значений входных сигналов, а второй – число нейронов в слое.

Обучается сеть с помощью правила обучения Кохонена (learnk):

где i –индекс выигравшего нейрона (обучению подвергается i-й ряд весовой матрицы)

Одно из ограничений самообучающихся сетей – это то, что не все нейроны могут быть задействованы в распознавании. Если изначально веса нейрона далеки от входных векторов, то такой нейрон никогда не выиграет в соревновании, и, соответственно, не будет подвергаться обучению. Чтобы обойти это ограничение, используются смещения. Положительное смещение, прибавленное к отрицательному расстоянию, делает вероятность выигрыша для нейрона выше. Таким образом, при обучении, смещения наиболее успешных нейронов уменьшаются, а менее успешных – увеличиваются, что приводит к равномерному распределению распознаваемых сигналов по нейронам. Такого рода обучение осуществляется с помощью функции learncon.

Другой тип самообучающихся сетей, имеющих некоторые преимущества перед рассмотренными – это так называемые самообучающиеся карты. Архитектура этих сетей приведена на следующем рисунке:

Рисунок 33. Самоорганизующаяся карта

В них обучение производится не только над самим нейроном, выигравшем соревнование, но и над его ближайшими соседями, что приводит к тому, что близко расположенные в сети нейроны учатся распознавать близкие образы, т.е. сеть запоминает топологию сигналов. Правило обучения для таких сетей приведено ниже:

Самоорганизующиеся карты могут иметь различную топологию (прямоугольные ячейки, шестиугольные ячейки, случайное расположение весов) и по-разному определять расстояние между нейронами.

Беспроводные самоорганизующиеся сети (MANET- Mobile Ad-Hoc Networks) представляют архитектуру построения мобильных радиосетей, которая предполагает отсутствие фиксированной сетевой инфраструктуры (базовых станций) и централизованного управления. Особую привлекательность эти сети приобрели с появлением беспроводных стандартов и сетевых технологий (Bluetooth, Wi-Fi, WiMAX). На основе уже существующих стандартов 802.11 и 802.16 можно строить беспроводные самоорганизующиеся сети городского масштаба, отличительной чертой которых можно назвать большую зону покрытия (несколько квадратных километров).

Беспроводная самоорганизующаяся сеть (БСС) характеризуется динамическими изменениями топологии, ограниченной пропускной способностью, ограниченной мощностью батарей (аккумуляторов) в узлах, неоднородностью ресурсов узлов, ограниченной безопасностью и др Однако в последнее время БСС-сети стали использовать в интеллектуальных транспортных системах и для дома (HANET - Home AdHoc Network), для сетей небольших офисов, для совместных вычислений компьютеров, расположенных на небольшой территории. Самоорганизующиеся сети (Ad-Hoc сети) могут быть классифицированы согласно их применению: - мобильные беспроводные самоорганизующиеся сети (Mobile Ad-hoc Networks, MANET); - Беспроводные mesh-сети (Wireless Mesh Networks, WMN);

Мобильная беспроводная самоорганизующаяся сеть (MANET), которую иногда называют мобильной mesh-сетью, является самонастраивающейся сетью, которая состоит из мобильных устройств. Все узлы используют для связи беспроводные соединения (рис. 1.8).

Рис. 1.8. Пример архитектуры БСС-сети

Все устройства в БСС-сети постоянно перемещаются, а следовательно, в сети постоянно меняются связи. Каждый узел должен выполнять функции маршрутизатора и принимать участие в ретрансляции пакетов данных. Главная задача в создании такой сети - сделать так, чтобы все устройства могли постоянно поддерживать актуальную информацию для правильной маршрутизации трафика. БСС-сеть также можно разделить на несколько классов:

Vehicular Ad Hoc Network (VANET) - Ad-Hoc-сеть, которая используется для связи транспортных средств друг с другом, а также для их соединения с придорожным оборудованием;

Intelligent vehicular Ad-Hoc network (InVANET) - своего рода искусственный интеллект, который помогает управлять автомобилем в разных непредвиденных ситуациях;

Internet Based Mobile Ad hoc Network (iMANET) - БСС-сеть, которая соединяет мобильные узлы с фиксированными Internet-шлюзами.

Беспроводные mesh-сети - это особый вид Ad-Hoc-сетей, который имеет более спланированную конфигурацию. Mesh-сети состоят из клиентов, маршрутизаторов и шлюзов (рис. 1.9). Основное отличие состоит в том, что беспроводные узлы не перемещаются в пространстве во время работы. Основное отличие между MANET и Mesh-сетями состоит в том, что, как правило, MANET - относится к терминальной сети, т.е. к сети без транзитных функций, а Mesh-сети - к транзитной сети, хотя деление это весьма условно, но принято в настоящее время. В соответствии с более сложными функциями Mesh-сети при ее построении тоже различают родительские и дочерние сети Internet.


Рис. 1.9. Пример беспроводной mesh-сети

На данный момент наблюдается огромный научный и прикладной интерес к созданию самоорганизующихся самовосстанавливающихся сетей .

Как было упомянуто выше, одним из наиболее актуальных кандидатов для реализации когнитивных беспроводной сетей считают: беспроводные самоорганизующиеся сети.

Рамминг (Ramming) в утверждает, что для БСС-сети требуется новый тип технологии организации сети, называемый когнитивной технологией. Он в подбор утверждает, что такая сеть должна понимать задачи приложения, а приложение способно понять возможности сети в любой момент времени. Это позволило бы сети, посредством изучения основных требований приложения, использовать новые возможности и динамически выбирать удовлетворяющие этим требованиям протоколы сети.

Как основное положение когнитивной теории, когнитивный цикл применяется в сетях для распознавания образов. Степень возможности распознавания образов узлом зависит от его логического положения и уровня расположения в сети. Исходя из этого, подобно БСС-сети, когнитивная сеть может рассматриваться в качестве динамической интегрирующейся сети. Поэтому возможно применять когнитивную технологию в БСС-сетях, что, следовательно, приводит к развитию БСС-сетей.

Когнитивная беспроводная самоорганизующаяся сеть - естественная конечная точка развития современной БСС-сети. Однако когнитивные сети реагируют намного быстрее, чем самоорганизующиеся сети, поскольку они должны быть способны изучать и планировать и, следовательно, существует большая потребность в самоанализе. Можно было бы утверждать, что полностью функционирующая когнитивная сеть является естественным развитием БСС-сети.

Рассмотрим простейший пример управления маршрутизацией в когнитивной беспроводной самоорганизующейся сети. В качестве примера необходимости адаптации всей системы рассматривается сеанс передачи данных в самоорганизующейся сети между исходящим узлом S1 и узлом назначения D1, как показано на рис. 1.10. Исходящий узел S1 не имеет достаточной мощности для прямой передачи данных в D1. Поэтому он должен передать данные в узел назначения только через промежуточные узлы, такие как R1 и R2.

Рис. 1.10. Управление маршрутизацией в когнитивной Ad-Нос сети

Предполагается, что цепь из источника до назначения имеет высокую вероятность успешной передачи. Уровень маршрутизации будет определять маршруты на основе минимального количества промежуточных узлов, которые в данном случае включают в себя либо R1, либо R2. Узел S1 выполняет адаптацию канального уровня для выбора R1 или R2 на основе отношения сигнала к шуму и наименьшей вероятности нарушения связи. С точки зрения канального уровня в узле S1 это обеспечивает самую высокую вероятность того, что переданные пакеты прибудут к ретрансляционным узлам корректно. Однако без дополнительной информации этот выбор не гарантирует вероятность доставки передаваемых данных от S1 до D1 .

В отличие от адаптации отдельных элементов сети, для расчета полной вероятности нарушения связи на пути от узла S1 до D1 через узлы R1 и R2 когнитивная сеть использует информацию от всех узлов. Это показывает преимущество более глобального подхода, но у когнитивной сети есть и другое преимущество: ее способность к обучению. Предположим, что механизм познания измеряет пропускную способность от источника до пункта назначения, чтобы оценить эффективность предыдущих решений, а узлы S1 и S2 направляют свой трафик в обоих направлениях через узел R2, поскольку это удовлетворяет требованию минимальной вероятности нарушения связи. Теперь предполагается, что R2 переполняется из-за большого объема трафика, поступающего из S2. Это становится очевидным в процессе изучения пропускной способности на основании сообщений узлов S1 и S2. Механизм изучения признает, что предшествующее решение больше не оптимально, и познавательный процесс направляется на выработку другого решения. Когнитивная сеть явно не знает, что есть переполнение в узле R2, потому что мы не включали эту информацию в качестве наблюдения. Тем не менее, сеть в состоянии сделать вывод, что могут возникнуть проблемы из-за снижения пропускной способности, а затем реагировать на переполнение, возможно, перенаправлением трафика через узлы R1 и (или) R3. Этот пример иллюстрирует потенциал когнитивных сетей в оптимизации непрерывной работы и способность реагировать на непредвиденные обстоятельства. Протокол маршрутизации когнитивной сети основан не на чисто алгоритмическом подходе и способен выбрать эффективный операционный режим даже в непредвиденных ситуациях.

Библиографический список

1- Wyglinski A.M., Nekovee M., Hou Y.T. (Editors). Cognitive radio communications and networks: principles and practice, Academic Press | 2009, 736 pages.

2- Комашинский В. И. Системы подвижной радиосвязи с пакетной передачей информации./ В.И. Комашинский, А.В. Максимов // СПБ.: Изд-во Лема, 2006. - 238с.

3- Cordeiro C. IEEE 802.22: the first worldwide wireless standard based on cognitive radio / С Cordeiro, K. Challapali, D. Birru, Sai Shankar // First IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks (DySPAN 2005), Nov. 2005. P.328-337.

4- Баранов В.П. Синтез микропрограммных автоматов. М.: Нолидж, 1997.-376 с.

5- Кучерявый А. Е. Самоорганизующиеся сети и новые услуги / А.Е. Кучерявый // Электросвязь, № 1 2009. С. 19-23.

6- Ramming С. Cognitive networks. Proceedings of DARPA Tech Symposium, March 2004. pp.9-11 .