Элементарные функции комплексного переменного примеры решения. Функции комплексной переменной. Дифференцирование функций комплексной переменной. Условия Коши-Римана. Понятие функции комплексной переменной

, страница 6

11 Основные функции комплексной переменной

Напомним определение комплексной экспоненты – . Тогда

Разложение в ряд Маклорена. Радиус сходимости этого ряда равен +∞, значит комплексная экспонента аналитична на всей комплексной плоскости и

(exp z)"=exp z; exp 0=1. (2)

Первое равенство здесь следует, например, из теоремы о почленном дифференцировании степенного ряда.

11.1 Тригонометрические и гиперболические функции

Синусом комплексного переменного называется функция

Косинус комплексного переменного есть функция

Гиперболический синус комплексного переменного определяется так:

Гиперболический косинус комплексного переменного -- это функция

Отметим некоторые свойства вновь введеных функций.

A. Если x∈ ℝ , то cos x, sin x, ch x, sh x∈ ℝ .

Б. Имеет место следующая связь тригонометрических и гиперболических функций:

cos iz=ch z; sin iz=ish z, ch iz=cos z; sh iz=isin z.

В. Основные тригонометрическое и гиперболическое тождества :

cos 2 z+sin 2 z=1; ch 2 z-sh 2 z=1.

Доказательство основного гиперболического тождества.

Основное тригонометрическое тождество следует из оновного гиперболического тождества при учете связи тригонометрических и гиперболических функций (см. свойство Б)

Г Формулы сложения :

В частности,

Д. Для вычисления производных тригонометрических и гиперболических функций следует применить теорему о почленном дифференцировании степенного ряда. Получим:

(cos z)"=-sin z; (sin z)"=cos z; (ch z)"=sh z; (sh z)"=ch z.

Е. Функции cos z, ch z четны, а функции sin z, sh z нечетны.

Ж. (Периодичность) Функция e z периодична с периодом 2π i. Функции cos z, sin z периодичны с периодом 2π , а функции ch z, sh z периодичны с периодом 2πi. Более того,

Применяя формулы суммы, получаем

З . Разложения на действительную и мнимую части :

Если однозначная аналитическая функция f(z) отображает биективно область D на область G, то D называется областью однолистности.

И. Область D k ={ x+iy | 2π k≤ y<2π (k+1)} для любого целого k является областью однолистности функции e z , которая отображает ее на область ℂ* .

Доказательство. Из соотношения (5) следует инъективность отображения exp:D k → ℂ . Пусть w -- любое ненулевое комплексное число. Тогда, решая уравнения e x =|w| и e iy =w/|w| с действительными переменными x и y (y выбираем из полуинтеравала при п > 1 отлична от нуля во всех точках, кроме z = 0. Записывая в формуле (4) w и z в показательной форме получаем, что Из формулы (5) видно, что комплексные числа Z\ и z2 такие, что где k - целое, переходят в одну точку w. Значит, при n > 1 отображение (4) не является однолистным на плоскости z. Простейшим примером области, в которой отображение ги = zn однолистно, является сектор где а - любое вещественное число. В области (7) отображение (4) конформно. - многозначна, т. к. для каждого комплексного числа z = ге1в Ф 0 можно указать п различных комплексных чисел, таких, что их n-я степень равна z: Отметим, что Многочленом степени п комплексного переменного z называется функция где заданные комплексные числа, причем ао Ф 0. Многочлен любой степени является аналитической функцией на всей комплексной плоскости. 2.3. Дробно-рациональная функция Дробно-рациональной функцией называется функция вида где) - многочлены комплексного переменного z. Дробно-рациональная функция аналитична во всей плоскости, кроме тех точек, в которых знаменатель Q(z) обращается в нуль. Пример 3. Функция Жуковского__ аналитична во всей плоскости г, исключая точку г = 0. Выясним условия на область комплексной плоскости, при которых функция Жуковсхого, рассматриваемая в этой области, будет однолистна. М Пусть точки Z) и zj функция (8) переводит в одну точку. Тогда при мы получаем, что Значит, для однолистности функции Жуковского необходимо и достаточно выполнение условия Примером области, удовлетворяющей условию однолистности (9), является внешность круга |z| > 1. Так как производная функции Жуковского Элементарные функции комплексного переменного Дробно-рациональные функции Степенная функция Показательная функция Логарифмическая функция Тригонометрические и гиперболические функции отлична от нуля всюду, кроме точек, то отображение области осуществляемое этой функцией, будет конформным (рис. 13). Заметим, что внутренность единичного круга |I также является областью однолистности функции Жуковского. Рис. 13 2.4. Показательная функция Показательную функцию ez определим для любого комплексного числа z = х + гу следующим соотношением: При х = 0 получаем формулу Эйлера: Опишем основные свойства показательной функции: 1. Для действительных z данное определение совпадает с обычным. В этом можно убедиться непосредственно, положив в формуле (10) у = 0. 2. Функция ez аналитична на всей комплексной плоскости, и для нее сохраняется обычная формула дифференцирования 3. Для функции ег сохраняется теорема сложения. Положим 4. Функция ez - периодическая с мнимым основным периодом 2xi. В самом деле, для любого целого к С другой стороны, если то из определения (10) вытекает, что Откуда следует, что, или где п - целое. Полоса не содержит ни одной пары точек, связанных соотношением (12), поэтому из проведенного исследования вытекает, что отображение w = е" одно л истно в полосе (рис. 14). Атак как производная, то это отображение конформно. Замечз нив. Функция г.г однолистна в любой полосе 2.5. Логарифмическая функция Из уравнения где задано, неизвестное, получаем Отсюда Тем самым функция, обратная функции определена для любого и предсташтяется формулой где Эта многозначная функция называется логарифмической и обозначается следующим образом Величину arg z называют главным значением логарифма и обозначают через Тогда для Ln z получается формула 2.6. Тригонометрические и гиперболические функции Из формулы Эйлера (11) для действительных у получаем Откуда Определим тригонометрические функции sin z и cos z для любого комплексного числа z посредством следующих формул: Синус и косинус комплексного аргумента обладают интересными свойствами. Перечислим основные из них. Функции sinz и cos z: 1) для действительных z -х совпадают с обычными синусами и косинусами; 2) аналитичны на всей комплексной плоскости; 3) подчиняются обычным формулам дифференцирования: 4) периодичны с периодом 2тг; 5) sin z - нечетная функция, a cos z - четная; 6) сохраняются обычные тригонометрические соотношения. Все перечисленные свойства без труда получаются из формул (15). Функции tgz и ctgz в комплексной области определяются формулами а гиперболические функции - формулами " Гиперболические функции тесно связаны с тригонометрическими функциями. Эта связь выражается следующими равенствами: Синус и косинус комплексного аргумента обладают еще одним важным свойством: на комплексной плоскости |\ принимают сколь угодно большие положительные значения. Покажем это. Пользуясь свойствами 6 и формулами (18) получаем, что Элементарные функции комплексного переменного Дробно-рациональные функции Степенная функция Показательная функция Логарифмическая функция Тригонометрические и гиперболические функции Откуда Полагая, имеем Пример 4. Нетрудно проверить, что -4 В самом деле,