К каким средствам измерения относится спектрофотометр. Эковью спектрофотометр: описание, сферы применения. Особенности работы устройства

Спектрофотометры предназначены для измерения коэффициента пропускания, оптической плотности и концентрации веществ в жидких пробах и могут быть применены в лабораториях различного профиля.

Выбор приборов для проведения спектрофотометрических методик довольно-таки широк. Приборы отличаются, прежде всего спектральным диапазоном (видимая область спектра или область, включающая УФ), спектральной шириной щели, погрешностью и воспроизводимостью установки длины волны, наличием сканирования спектров, комплектацией, типом установки длины волны (ручная или автоматическая — программная) и т.д.

Производители спектрофотометров и основные модели

Среди приборов, продающихся на российском рынке, можно выделить следующие модели и производителей:

(модели В-1100, УФ-1100, УФ-1200, УФ-3000, УФ-3100, УФ-3200, УФ-6100). Производятся в Китае по заказу и под контролем российской компании «Промышленные экологические лаборатории».

— Спектрофотометры серии ПЭ (ПЭ-5300ВИ, ПЭ-5400ВИ, ПЭ-5400УФ). Приборы производятся российской компанией «ЭКРОСХИМ».

— Спектрофотометр КФК-3-01 (Концентрационный фотоэлектрический фотометр). Данный прибор производится Загорским оптико-механическим заводом (ЗОМЗ) и является усовершенствованной моделью КФК-3, который применялся практически в любой лаборатории СССР.

— Спектрофотометр КФК-3КМ производства «ЮНИКО-СИС», Россия.

— Спектрофотометры СФ-56 и СФ-2000 для работы в диапазоне 190–1100 нм. Приборы производятся российской компанией «ОКБ Спектр»

— Спектрофотометры UNICO (модели 1201, 1205, 2100, 2800, 2802, 2802S, 2804, 2100UV). Производитель United Products & Instruments, Inc.», США, дистрибьютор в России — компания «ЮНИКО-СИС»

— Спектрофотометры LEKI (модели SS1104, SS1207, SS1207 UV, SS2107, SS2107UV, SS2109UV, SS2110UV). Приборы производятся MEDIORA, Финляндия, дистрибьютором в России является компания «Лабораторное оборудование и приборы».

Все указанные приборы внесены в реестр средств измерения и могут быть использованы в аккредитованной лаборатории.

Технические характеристики и особенности моделей

Ниже будут рассмотрены основные технические характеристики, особенности и цена наиболее популярных моделей спектрофотометров.

Спектрофотометры B-1100 и УФ-1100 серии Эковью

Выпускаются с 2016 года и пришли на смену снятым с производства спектрофотометрам серии ПЭ Промэколаб. Приборы серии ПЭ Промэколаб работают во многих лабораториях и хорошо себя зарекомендовали. Пришедшие на смену модели Эковью обладают улучшенными техническими характеристиками и усовершенствованным программным обеспечением.

Особенности:

  • Наличие цветного дисплея
  • Спектральный диапазон (модель B-1100), нм: от 315 до 1050;
  • Спектральный диапазон (модель УФ-1100), нм: от 200 до 1050;

Ориентировочная цена спектрофотометра B-1100 – 75000,00 руб. , УФ-1100 – 148000,00 руб.

и УФ-1200 серии Эковью

Приборы отличаются от моделей В-1100 и УФ-1100 улучшенными характеристиками, дополнительными функциями программного обеспечения. наличием большого цветного сенсорного экрана, что является уникальным для приборов данного класса. Также приборы снабжены специальными шаговыми двигателями, снижающими шумность работы. Как и в моделях предыдущей серии приборы оснащены системой самокалибровки и не требуется использования специальных контрольных светофильтров.

Особенности:

  • Наличие цветного сенсорного дисплея и интуитивно-понятного интерфейса;
  • Передача данных на внешнее устройство хранения
  • Перенос градуировочных кривых между однотипными проборами
  • Возможность сохранения результатов измерений в памяти прибора
  • Наличие системы подсказок оператору, которая облегчает работу на приборе
  • Автоматическая (программная) установка длины волны
  • Большое кюветное отделение, позволяющее использовать кюветы с длиной оптического пути до 100 мм.
  • Система автоматической юстировки длины волны (нет необходимости в контроле точности пробора с помощью светофильтров)
  • Наличие USB-разъема

Основные технические характеристики:

  • Спектральный диапазон (), нм: от 315 до 1050;
  • Спектральный диапазон (модель УФ-1200), нм: от 190 до 1050;
  • Диапазон измерений спектральных коэффициентов направленного пропускания, %: от 0, 1 до 99;
  • Диапазон показаний спектральных коэффициентов направленного пропускания, %: от 0 до 200;
  • Диапазон показаний оптической плотности, Б: от -0,3 до 3,0;
  • Погрешность установки длин волн, нм, не более: ±1,0
  • Спектральная ширина щели, нм: 4,0

Ориентировочная цена спектрофотометра B-1200 – 115000,00 руб., УФ-1200 – 198000,00 руб.

Спектрофотометры серии ПЭ

Компания «Экросхим» (бывшая «Экохим») выпускает спектрофотометры ПЭ-5300ВИ, ПЭ-5400ВИ и ПЭ-5400УФ. Приборы предназначены для проведения спектрофотометрических методик в видимой и УФ области спектра. Приборы имеют регистрационное удостоверение на медицинское изделие (РУ) и могут быть использованы в медучреждениях.

Спектрофотометр ПЭ-5300ВИ

Прибор имеет ручную установку длины волны с точностью 2 нм, предназначен для измерения в видимой области спектра, в базовой комплектации снабжен трехпозиционным кюветодержателем на стандартные кюветы КФК (ширина 24 мм), при использовании дополнительных переходников (входят в комплект поставки) возможна работа с кюветами европейского типа (ширина 10 мм). Большое кюветное отделение позволяет работать с кюветами с длиной оптического пути до 100 мм. Возможна комплектация кюветодержателем на 4 кюветы шириной 10 мм (европейский стандарт) длиной оптического пути от 5 до 50 мм. Наличие USB разъема для подключения ПК.

Основные технические характеристики:

  • Спектральный диапазон: 325-1000 нм.
  • Погрешность установки длины волны, не более: ±2 нм.
  • Воспроизводимость установки длины волны, не более: 1 нм.
  • Пределы допускаемой абсолютной погрешности при измерении спектральных коэффициентов направленного пропускания, не более: ±0,5 %Т.
  • Диапазон измерений оптической плотности: от 3,000 до 0,000;

Ориентировочная цена спектрофотометра ПЭ-5300ВИ — 75000,00 руб.

Спектрофотометр ПЭ-5400ВИ и ПЭ-5400УФ

Приборы имеет автоматическую (программную) установку длины волны с точностью 1 нм, предназначены для измерения в видимой и УФ области спектра, в базовой комплектации снабжены четырехпозиционным кюветодержателем на стандартные кюветы КФК (ширина 24 мм), при использовании дополнительных переходников (входят в комплект поставки) возможна работа с кюветами европейского типа (ширина 10 мм). Большое кюветное отделение позволяет работать с кюветами с длиной оптического пути до 100 мм. Возможна комплектация кюветодержателем на 6 кювет толщиной 10 мм с длиной оптического пути от 5 до 50 мм.

В приборах серии ПЭ-5400 предусмотрена возможность сканирования спектра с использованием специального программного обеспечения SC5400 поставляемого отдельно. Наличие USB разъема для подключения ПК.

Основные технические характеристики:

  • Спектральный диапазон (для модели ПЭ-5400ВИ): 315-1000 нм.
  • Спектральный диапазон (для модели ПЭ-5400УФ): 190-1000 нм.
  • Спектральная ширина щели: 4 нм.
  • Погрешность установки длины волны: не более ±1 нм.
  • Воспроизводимость установки длины волны: ± 0,5 нм.
  • Пределы допускаемой абсолютной погрешности при измерении спектральных коэффициентов направленного пропускания, не более: ±0,5 %Т (315-1000 нм) и ±1,0 %Т (190-315 нм).
  • Диапазон измерения оптической плотности: от 3,000 до 0,000;
  • Диапазон измерения коэффициента направленного пропускания: от 0,0 до 100,0%.

Ориентировочная цена спектрофотометра ПЭ-5400ВИ — 109000,00 руб., ПЭ-5400УФ — 167000,00 руб.

Спектрофотометр КФК-3-01-«ЗОМЗ» (фотометр фотоэлектрический)

Прибор выпускается одним из старейших предприятий оптической отрасли «Загорским оптико-механическим заводом». Завод был основан в 1935 году и выпускал известные всем химикам спектрофотокалориметры КФК-2 и КФК-3.

КФК-3-01 представляет собой малогабаритный универсальный спектрофотометр, предназначенный для анализа жидких растворов с использованием спектрофотометрических методик в видимой области спектра.

Прибор выпускается в трех вариантах исполнения: КФК-3-01-«ЗОМЗ» — базовая модель; КФК-3-02-«ЗОМЗ» — прибор с термостатируемым кюветным отделением; КФК-3-03-«ЗОМЗ» — фотометр с проточной кюветой с насосом и внешним термостатом для подготовки проб.

Прибор снабжен кюветодержателем для установки кювет с длиной оптического пути 1-100 мм. Фотометры КФК-3-«ЗОМЗ» имеют регистрационное удостоверение на медицинское изделие (РУ) и могут быть использованы в медицинской практике.

Основные технические характеристики:

  • Спектральный диапазон: 315-990 нм;
  • Погрешность установки длины волны ±3 нм
  • Выделяемый спектральный интервал, нм, не более: 5 нм;
  • Диапазон измерения коэффициента пропускания, %: 1-100
  • Диапазон измерения оптической плотности, Б: 0-3
  • Диапазон измерений концентрации, ед. конц. 0,001-9999
  • Погрешность измерения коэффициента пропуская ±0,5%

Ориентировочная цена спектрофотометра КФК-3-01-«ЗОМЗ» — 73000,00 руб.

Спектрофотометр КФК-3КМ

Спектрофотометр работает в видимой области спектра (325-1000 нам), измеряет оптическую плотность, коэффициент пропускания и концентрацию растворов и предназначен для реализации широкого круга спектрофотометрических методик. Прибор выпускается в России из импортных комплектующих, имеет яркий и необычный дизайн.

По возможностям и основным характеристикам полностью заменяет ФЭК, КФК-2, КФК-3, КФК-5.

Особенности:

  • Простота использования, интуитивно-понятный интерфейс;
  • Подключается к компьютеру через порт RS-232C (COM-порт) и работа со специализированным ПО.
  • Наличие регистрационного удостоверения на медицинскую технику (РУ) , прибор может использоваться в медицинских учреждениях;
  • Удобная 10-и значная клавиатура;
  • Функция программирования для создания и сохранения градуировочных графиков;
  • Работа с кювета от 5 до 100 мм стандартной толщины (24 мм, стандартные кюветы для КФК);
  • Наличие переходников под кюветы европейского стандарта шириной 10 мм;
  • Энергонезависимая память для сохранения измерений.

Основные технические характеристики:

  • Спектральный диапазон: 325-1000 нм
  • Ширина спектральной щели: 5 нм
  • Погрешность установки длины волны, не более 2 нм
  • Повторяемость установки длины волны — 1нм
  • Диапазон измерений коэффициента пропускания (Т): 0-125%
  • Диапазон измерения оптической плотности (А): -0,1-2,5
  • Погрешность определения коэффициента пропускания, не более 1.0%Т

Ориентировочная цена спектрофотометра КФК-3-КМ — 80000,00-85000,00 руб. Цена прибора зависит от курса доллара.

В режиме калибровки оператор с пульта вводит нормированные значения, приписанные данному калибровочному раствору, последовательно подает в кюветное отделение калибровочные растворы и проводит измерения.

В режиме анализа оператор устанавливает в кюветное отделение кювету с исследуемым раствором и проводит измерение.

Рис. 3.31. Обобщенная структурная схема одноканального колориметра. 1 - источник световой энергии; 2 - диафрагма; 3 - оптическая система; 4 - полосовой фильтр; 5 - оптическая система; 6 - кювета; 7 - фотоприемник; 8 - аналого-цифровой преобразователь; 9 - микро-ЭВМ; 10 - индикатор; 11 - пульт оператора;

12 - интерфейс связи с внешней ЭВМ и регистрирующим устройством

Рис. 3.32. Упрощенная оптическая схема однолучевого спектрофотометра. 1 - монохроматор (источник монохроматического излучения световой энергии на длине волны \\, 2 - кювета с исследуемым раствором; 3 - детектор (фотоприемник); Ф„ - падающий поток световой энергии; Ф - поток световой энергии, прошедший через раствор, поглощающий часть энергии

Рис. 3.33. Обобщенная структурная схема одноканального спектрофотометра.

1 - источник световой энергии (видимая область);

2 - поворотный отражатель; 3 - источник световой энергии (ультрафиолетовая область); 4 - оптическая система, направляющая поток энергии на входную щель; 5 - входная щель; 6 - оптическая система, формирующая параллельный поток световой анергии;

7 - диспергирующий элемент (призма или дифракционная решетка); 8 - оптическая система, направляющая поток энергии на выходную щель; 9 - выходная щель; 10 - оптическая система, формирующая поток энергии, проходящий через кювету; 11 - кювета; 12 - фотоприемник; 13 - аналого-цифровой преобразователь; 14 - микро-ЭВМ; 15 - индикатор;

16 - пульт оператора; 17 - интерфейс связи с внешней ЭВМ и регистрирующим устройством

Если у прибора отсутствует режим автоматической калибровки, то оператор строит граду-ировочный график зависимости оптической плотности и нормированных значений, приписанных калибровочным растворам.

Спектрофотометры

Основное отличие спектрофотометра от фотоколориметра состоит в возможности пропустить через исследуемый образец световой поток любой требуемой длины волны, проводить фотометрические измерения, сканируя (просматривая) весь диапазон длин волн не только видимого (V1S) света - от 380 до 750 нм, но и ближнего ультрафиолета (UV) - от 200 до 380 нм.

Последнее обстоятельство не исключает целесообразности выпуска недорогих спектрофотометров, не "имеющих источника ультрафиолетового излучения и работающих только в видимой части оптического диапазона волн.

Целью упомянутого и очень важного режима работы спектрофотометров - режима сканирования - является построение спектральной кривой поглощения (абсорбции) и нахождение на ней пиков, а также исследование процессов интерференции и поиск ложных пиков, приводящих к ошибочным результатам при спектро-фотометрических исследованиях.

Основные компоненты однолучевого спектрофотометра показаны на рис. 3.32.

Принцип работы спектрофотометра. Полихроматический свет от источника проходит через монохроматор, который разлагает белый свет на цветовые компоненты. Монохроматическое излучение с дискретным интервалом в несколько нанометров проходит через ту часть прибора, где располагается образец с исследуемой пробой.

Источник света. Спектрофотометр UV/VIS (ультрафиолет + видимый свет) имеет два источника света: для видимого участка спектра и источник ультрафиолета - от 100 до 390 нм.

Источником видимого света служит вольфрамовая, как правило, галогенная лампа, дающая постоянный поток света в диапазоне 380- 950 нм, являясь стабильным и долговечным источником световой энергии со средним сроком службы более 500 ч.

В качестве источника УФ используются водородные или дейтериевые лампы. Ультрафиолетовые лампы, содержащие дейтерий, имеют высокую интенсивность излучаемого потока и непрерывный спектр в диапазоне от 200 до 360 нм.

Устройство и принцип работы спектрофотометра

На рис. 3.33 представлена обобщенная структурная схема спектрофотометра.

Рассмотрим взаимодействие и функциональное назначение элементов структурной схемы.

Имея общие представления о принципе измерения спектров поглощения, можно попытаться синтезировать наипростейший спектрофотометр. Схема такого прибора приведена на рис. 1.1.19.

Рис. 1.1.19.

Такая схема спектрофотометра называется однолучевой. Здесь для измерения поглощения в один и тот же монохроматический луч света необходимо поочерёдно пропускать через кювету с образцом и кювету с растворителем (контроль).

Современные модели спектрофотометров построены по двулучевому принципу. В этом типе спектрофотометров монохроматический луч периодически направляется вращающимся зеркалом по двум каналам, в один из которых помещается кювета с образцом, в другой - кювета с растворителем. Лучи проходят образец и контроль в противофазе, и разница в интенсивностях регистрируется фото- метрирующей системой с последующей автоматической записью спектра на бланке в координатах:

К таким спектрофотометрам относится двулучевой регистрирующий прибор Specord М-40, оснащенный микроЭВМ, с высокой степенью автоматизации процессов измерения и возможностью математической обработки результатов (рис. 1.1.20).

Спектрофотометр Specord М-40 предназначен для измерения спектров поглощения в широком диапазоне длин волн

Я (200-900 нм) или V (50.000-11.000 см ~ х). Волновое число v

есть величина, обратная длине волны Я, т.е. измеряется в см ~ х.

Если Я выражается в нм, то: В приборе используются два источника света - дейтериевая лампа для ультрафиолетового диапазона 200-400 нм (50.000-25.000 см" 1) и лампа накаливания для видимой и ближней инфракрасной области 400-900 нм (25.000-

11.000 см" 1). Оптика прибора рассчитана на работу во всём указанном диапазоне и собрана с использованием отражательной (зеркальной) техники (плоские зеркала, конденсоры, реплики и т.д.).

В ультрафиолетовой области используется принцип двойной мо- нохроматизации излучения дейтериевой лампы. Дифракционный двойной монохроматор, состоящий из предварительного и главного монохроматора, обеспечивает высокое качество монохроматизации ультрафиолетового света и уменьшение мешающего рассеянного излучения. При развертке спектра в видимой области в ход лучей предварительного монохроматора вводится плоское зеркало-экран, которое перекрывает лучи водородной лампы и направляет на входную щель главного монохроматора свет от лампы накаливания. Таким образом, в видимой области работает только главный монохроматор.

Рабочий диапазон ультрафиолетовых решеток в предварительном и главном монохроматоре (1302 штр/мм) находится в пределах 54.000-28.000 см" 1 , а решётки видимого диапазона (651 штр/мм) в пределах 31.000-11.000 см" 1 . Переключение решеток от работающих в ультрафиолетовой области к предназначенным для видимой области происходит автоматически при волновом числе у =30.000 см" 1 . Обе решетки относятся к решеткам первого порядка (см. выше), а для предотвращения попадания световых лучей спектров более высоких порядков при работе в видимом диапазоне автоматически вводятся светофильтры (при переключении светофильтров развертка спектра на время также автоматически прекращается).

В спектрофотометре Specord М-40 предусмотрено регулирование ширины щелей. Входная и выходная щели монохроматора жёстко связаны между собой и управляются шаговыми двигателями от ЭВМ. Возможны два режима управления щелями:

  • - с постоянной шириной щели при записи всего спектра,
  • - с переменной шириной щели, величина которой может изменяться в ходе записи спектра.

Величину спектральной ширины щели можно задавать, выбирая фиксированные значения из набора щелей от 10 см" 1 до 200 см" 1 . Развертка спектра по длинам волн в спектрофотометре Specord М-40 производится шаговыми двигателями, работа которых контролируется встроенной в прибор микроЭВМ. Таким образом, измерение спектра производится по точкам - точно фиксированным длинам волн. Выбор ширины щелей и шага (числа точек) производится в зависимости от особенностей объекта и цели исследования.

Монохроматический луч заданной спектральной ширины (интервала с известной ^Кпшструм .) модулируется и затем направляется


Рис. 1.1.20.

1. Источник ультрафиолетового излучения - дейтериевая лампа; 2. Источник видимого и инфракрасного излучения - лампа накаливания; 3. Коллиматор предварительного монохроматора (вогнутое зеркало); 4. Конденсор лампы накаливания (вогнутое зеркало); 5. Дифракционная решетка предварительного монохроматора; 6. Плоское поворотное зеркало; 7,10. Входная (7) и выходная (10) щели главного монохроматора; 8. Коллиматоры главного монохроматора (вогнутые зеркала); 9. Дифракционная решетка главного монохроматора Эберта (а - реплика для ультрафиолетовой области, б - реплика для видимой и инфракрасной области); 11. Модулятор; 12. Вогнутые тороидальные зеркала; 13. Разделяющее попеременно два луча поворотное зеркало на оси мотора; 14. Плоское поворотное зеркало; 15. Кювета с образцом; 16. Кювета с контролем; 17. Фотоумножитель (ФЭУ).

поочерёдно с помощью вращающегося плоского зеркала с прорезями (13, рис. 1.1.20) в канал с объектом или в канал с растворителем (контролем). Камера для объекта разделена на два отделения. Большой отсек предназначен для работы с прозрачными растворами, а малый - для рассеивающих свет объектов.

Прошедшие через образец и контроль лучи поочерёдно в противофазе попадают на фотоумножитель, генерируя (если есть поглощение света в образце) переменный фототок (рис. 1.1.21). Если интенсивность лучей одинакова (поглощение двух кювет одинаково), то переменный фототок на выходе ФЭУ равен 0.


Рис. 1.1.21.

В противном случае возникает переменный ток, который усиливается. Сигнал обрабатывается, и результат измерения (пропускание

или оптическая плотность ) регистрируется на

бланке самописца спектрофотометра. Весь процесс измерения спектра и его воспроизведение осуществляется под контролем мик- роЭВМ, встроенной в прибор. Компьютеризация спектрофотометра дает возможность использования программ оптимального измерения и последующей математической обработки результатов, а также сохранения в памяти ЭВМ полученной информации в постоянной готовности для обработки.

Спектрофотометры - современное оборудование, предназначенное для изучения свойств веществ или предметов посредством анализа спектра оптического диапазона электромагнитного излучения, прошедшего через образец или отраженного от него. Проще говоря, спектрофотометры сравнивают поток света, изначально направленный на изучаемый образец, с потоком света, прошедшим через образец или отразившимся от него. Для исследований сканируют максимально широкий диапазон длин волн - от 160 нм (область ультрафиолета) до 3300 нм (инфракрасная область), что позволяет получить максимум информации о веществе.

Методы спектрофотометрии основаны на том, что своими, характерными только для него, спектральными свойствами, обладает каждое вещество. При этом не имеют значения агрегатное состояние, температура, взаимодействие образца с другими веществами, например, в смеси или химическом соединении. С помощью спектрофотометров возможны качественные и количественные исследования.

Сложнее и дороже обычных фотоколориметров, но зато они точнее и позволяют решать более сложные задачи. Большим преимуществом спектрофотометров является возможность делать вывод о составе вещества, наличии и количестве примесей, в то время как фотоколориметры работают только с уже известными растворами. Например, подделку красного вина с помощью фуксина определить фотоколориметром невозможно, так как цвет раствора фуксиновых солей идентичен цвету натурального вина. А вот спектрофотометр легко выявит и идентифицирует нетипичный спектр посторонней примеси.

Устройство спектрофотометра

Спектрофотометры всех видов состоят из следующих основных компонентов:
- источник света;
- монохроматор;
- оптические элементы, направляющие световой поток: стекла, призмы, зеркала, световоды и пр.;
- отделение для изучаемого вещества, твердого или жидкого;
- фотоприемник;
- усилитель сигналов.

В качестве источника света применяются обычные вольфрамовые лампы, работающие в видимом и инфракрасном спектре, дейтериевые лампы для УФ-диапазона, комбинированные галогено-дейтериевые лампы с диапазоном от ультрафиолетового до инфракрасного.

В монохроматоре используют призмы или дифракционные решетки, выделяющие излучение определенной длины волны, обычно с точностью ±10 нм (прецизионные лабораторные приборы позволяют производить анализ с точностью ±2 нм).

Отделение для изучаемого вещества может быть приспособлено как для одного образца, так и для нескольких, а также для оперативного проточного анализа.
Фотоприемники фиксируют уровень светового потока, прошедшего через исследуемый образец. Результаты могут отображаться в разных видах, в зависимости от назначения прибора и от выбора вида исследования. Как правило, спектрофотометры оснащаются несколькими типами фотоприемников для того, чтобы фиксировать излучение в различных областях спектра. Например, сурьмяно-цезиевый способен фиксировать излучение с длиной волны от 186 до 700 нм, а полупроводниковый на основе PbS - от 700 до 1800 нм.

Самые современные спектрофотометры оснащаются фотодиодной матрицей с встроенными датчиками для каждого диапазона длин волн. Все датчики преобразуют световые сигналы в электрические одновременно, позволяя специализированным микроконтроллерам практически мгновенно выводить результаты анализов на дисплей. (Обычные спектрофотометры обрабатывают сигналы для волн разной длины последовательно.) От того, сколькими фотодиодными датчиками оснащен прибор, зависит его разрешающая способность. Спектрофотометры с фотодиодной матрицей позволяют проводить оперативные анализы прямо на производстве и в момент химической реакции, анализируя состояние реакционных продуктов.

В следующей статье мы расскажем о принципе работы спектрофотометров, местах их применения и особенностях подбора подходящего оборудования для лаборатории.

Электронный прибор, с помощью которого определяется состав веществ и их соединений в эмульсиях, взвесях и растворах называется медицинским спектрофотометром. Устройство имеет два наиболее известных названия: фотоэлектрический фотометр и фотоэлектроколориметр. Спектрофотометры используются в различных сферах, но больше всего они нашли свое применение в медицине и фармацевтике. Приборы отличаются высокой точностью и позволяют сэкономить реактивы и время на проведения исследования.

Особенности спектрофотометров

Самые первые фотометры нуждались в участии медицинского работника для проведения исследования. Специалист должен был сравнивать и фиксировать полученные с устройства показатели. Данные сопоставлялись с общепринятыми нормативами. На смену таким приборам пришли автоматизированные фотоэлектроколориметры.

Спектрофотометры – это современное медицинское оборудование, которое предназначается для изучения и анализа свойств предметов либо веществ с помощью электромагнитного излучения. Световые лучи проходят сквозь пробу или отражаются от нее. Прибор сравнивает поток света, который первоначально направляется на биоматериал с излучением, проходящим сквозь образец либо отражающим от его поверхности.

Для проведения анализа сканируется широченный диапазон волн: начиная от 160 нм (ультрафиолет), заканчивая 3300 нм (инфракрасные лучи), с помощью чего получается максимально точная информация о веществе.

Спектрофотометрическая методика основана на том, что каждый предмет обладает особенными спектральными характеристиками. Именно поэтому во время проведения анализа не играет роли температурный режим и агрегатное состояние образца. Особенностью спектрофотометра является возможность проведения качественных и количественных исследований.

Главным плюсом фотоэлектрического фотометра есть вывод полученной информации на дисплей (лаборант может увидеть состав пробы, наличие и численность примесей). С помощью специальных световых фильтров устройство определяет в образце не менее 3-5 составляющих компонентов.

Сферы применения

Спектрофотометры используются для исследований в биохимии (анализируются липиды, электролиты, субстраты, ферменты), иммунохимии (проводится анализ ламбда, ферритин, миоглобин, микроальбумин, гаптоглобин), бактериологии. Для анализа качества еды и воды (сточной, природной и питьевой) применяется фотоэлектроколориметр. При определении качественных характеристик воды определяется мутность и цвет жидкости, наличие тяжелых металлов и поверхностно-активных компонентов, содержание нитритов, фосфатов, фенолов и сульфатов.

Спектрофотометр пригодится для проведения научных, гормональных, экологических и специальных исследований. В отделениях санитарно-эпидемиологического надзора обязательным является наличие данного прибора. Кроме медицины оборудование используется в сельском хозяйстве и промышленной отрасли.

Фотоэлектрический фотометр нужен для:

  • выявления чистоты исследуемых образцов и нахождения примесей;
  • измерения в жидкостях оптической плотности и ее изменений;
  • определения концентрации пробы (исследование проводится в медицинских учреждениях);
  • изучения, анализа состава и химического строения веществ, образцов и реактивов;
  • спектральной диагностики.

Фотоэлектроколориметр – это устройство, которое применяется для проведения различных исследований: медицинских; биологических; фармацевтических; химических. Благодаря точным результатам, которые появляются на экране оборудования, доктор может узнать характеристику реагентов и назначить пациенту эффективное лечение.

Как устроен прибор?

Абсолютно все автоматизированные фотоэлектроколориметры состоят из: источника света (вольфрамовой, дейтериевой или галогено-дейтериевой лампы); усилителя сигналов; фотоприемника; монохроматора; оптических составляющих (световодов, зеркала, призмы и стекла); отсека для реагента.

Монохроматор содержит дифракционную решетку либо призму, которые выделяют излучение определенной длины волны. В различных моделях есть от одного до четырех отсеков для проб. С помощью фотоприемников спектрофотометр фиксирует уровень светового излучения, который проходит сквозь биологический материал.

Наиболее современные приборы укомплектованы фотодиодной матрицей, в состав которой входит встроенный датчик. Чип преобразует световой сигнал в электрический, это фиксируется микроконтроллером и высвечивается на мониторе оборудования. Не достаточно мощные приборы обрабатывают волны с различной длиной постепенно, и только потом выводят результаты на дисплей. От количества фотодиодных датчиков зависит производительность и информативность спектрофотометра.

С помощью приборов с фотодиодной матрицей можно проводить оперативные исследования не отходя от производства либо во время возникновения химической реакции. Это позволяет детально проанализировать состояние реакционных веществ.

Особенности работы устройства

Спектрофотометрическая методика основана на измерении степени отражения или поглощения монохроматических световых лучей. Во время исследования посторонние факторы не могут влиять на результативность анализа. Все приборы работают на двух разновидностях схем. В первом случае на пробу попадает монохроматический световой луч с определенной длиной волны, который после прохождения через образец направляется на фотоприемник, измеряющий разницу между потоками.

Суть второй схемы заключается в том, что на реагент попадает световой поток прямо от лампы, затем монохроматор выделяет небольшой пучок и направляет его к фотоприемнику.

Спектрофотометры бывают однолучевыми и двухлучевыми. В приборах с одним лучом для измерения применяются коэффициенты коррекции. В случае двухлучевой диагностики один луч попадает на пробу, а второй – на эталонное значение. Оборудование с двумя лучами более точное, информативное и менее чувствительное к окружающим факторам.

Правила выбора спектрофотометра

При подборе устройства необходимо учитывать сферу его применения и выполняемые задачи. Фотоэлектрические фотометры бывают переносными и стационарными. Портативные аппараты имеют небольшой вес, компактные и легкие в использовании. Стационарные приборы устанавливаются в медицинских учреждениях и диагностических центрах. С помощью этих устройств проводятся более сложные измерения. Такие спектрофотометры могут подключаться к персональному компьютеру с помощью кабеля, а полученные данные подлежат архивированию, обработке и распечатке на принтере.

При выборе медицинского аппарата нужно учитывать: спектр действия (диапазон); длину волны; многофункциональность устройства; габариты; цену; вероятность проведения определенных исследований; количество секций для реагентов; способ получения результатов. Также необходимо обратить внимание на штатную комплектацию модели спектрометра, потому как практически все современные приборы продаются с кюветом и чашкой Петри.