Основные формулы по физике - колебания и волны. Длина волны. Скорость распространения волны (Ерюткин Е.С.) На какой длине волны

Длину волны можно также определить:

  • как расстояние, измеренное в направлении распространения волны, между двумя точками в пространстве, в которых фаза колебательного процесса отличается на 2π;
  • как путь, который проходит фронт волны за интервал времени, равный периоду колебательного процесса;
  • как пространственный период волнового процесса.

Представим себе волны, возникающие в воде от равномерно колеблющегося поплавка, и мысленно остановим время. Тогда длина волны - это расстояние между двумя соседними гребнями волны, измеренное в радиальном направлении. Длина волны - одна из основных характеристик волны наряду с частотой , амплитудой , начальной фазой, направлением распространения и поляризацией . Для обозначения длины волны принято использовать греческую букву λ {\displaystyle \lambda } , размерность длины волны - метр.

Как правило, длина волны используется применительно к гармоническому или квазигармоническому (например, затухающему или узкополосному модулированному) волновому процессу в однородной, квазиоднородной или локально однородной среде. Однако формально длину волны можно определить по аналогии и для волнового процесса с негармонической, но периодической пространственно-временной зависимостью, содержащей в спектре набор гармоник. Тогда длина волны будет совпадать с длиной волны основной (наиболее низкочастотной, фундаментальной) гармоники спектра.

Энциклопедичный YouTube

    1 / 5

    Амплитуда, период, частота и длина волны периодических волн

    Звуковые колебания - Длина волны

    5.7 Длина волны. Скорость волны

    Урок 370. Фазовая скорость волны. Скорость поперечной волны в струне

    Урок 369. Механические волны. Математическое описание бегущей волны

    Субтитры

    В прошлом видео мы обсуждали, что произойдёт, если взять, скажем, верёвку, дёрнуть за левый конец – это, конечно, может быть и правый конец, но пусть будет левый - итак, дёрнуть вверх, а потом вниз и затем назад, в исходное положение. Мы передаём верёвке некое возмущение. Это возмущение может выглядеть примерно так, если я дёрну верёвку вверх и вниз один раз. Возмущение будет передаваться по верёвке приблизительно таким образом. Закрасим чёрным цветом. Cразу после первого цикла – рывка вверх и вниз - верёвка будет выглядеть примерно так. Но если немного подождать, она приобретёт примерно такой вид, учитывая, что мы дёрнули один раз. Импульс передаётся дальше по верёвке. В прошлом видео мы определили это возмущение, передающееся по верёвке или в данной среде, хотя среда не обязательное условие. Мы назвали его волной. И, в частности, данная волна - это импульс. Это импульсная волна, потому что здесь в сущности было только одно возмущение верёвки. Но если мы продолжим периодически дёргать верёвку вверх и вниз с регулярными интервалами, то она будет выглядеть примерно, примерно так. Я постараюсь изобразить как можно аккуратнее. Она будет выглядеть вот так, и колебания, или возмущения, будут передаваться вправо. Они будут передаваться вправо с некой скоростью. И в этом видео я хочу рассмотреть именно волны такого типа. Представьте, что я периодически дёргаю левый конец верёвки вверх и вниз, вверх и вниз, создавая периодические колебания. Мы назовем периодическими волнами. Это периодическая волна. Движение повторяется снова и снова. Сейчас я хотел бы обсудить некоторые свойства периодической волны. Во-первых, можно заметить, что при движении верёвка поднимается и опускается на некоторое расстояние от первоначального положения, вот оно. Насколько удалены высшая и низшая точки от начального положения? Это называется амплитуда волны. Это расстояние (выделю его пурпурным цветом) - это расстояние называется амплитуда. Моряки иногда говорят о высоте волны. Под высотой обычно подразумевается расстояние от подошвы волны до её гребня. Мы говорим об амплитуде, или расстоянии от изначального, равновесного положения до максимума. Обозначим максимум. Это высшая точка. Высшая точка волны, или ее вершина. А это подошва. Если бы вы сидели в лодке, вас бы интересовала высота волны, все расстояние от вашей лодки до высшей точки волны. Ладно, не будем удаляться от темы. Вот что интересно. Далеко не все волны создаются мной, дёргающим левый конец верёвки. Но, думаю, вы поняли, что эта схема может демонстрировать множество разных типов волн. И это по сути отклонение от средней, или нулевой, позиции, амплитуда. Возникает вопрос. Ясно, как далеко отклоняется верёвка от средней позиции, но как часто это происходит? Сколько нужно времени, чтобы веревка поднялась, опустилась и вернулась назад? Как долго продолжается каждый цикл? Цикл – это движение вверх, вниз и на изначальную точку. Сколько длится каждый цикл? Можно сказать, какова продолжительность каждого периода? Мы сказали, что это периодическая волна. Период – это повторение волны. Продолжительность одного полного цикла называется периодом. И период измеряется временем. Может быть, я дёргаю верёвку каждые две секунды. Чтобы она поднялась, опустилась и вернулась к середине, нужно две секунды. Период – это две секунды. И другая близкая характеристика – сколько циклов в секунду я делаю? Другими словами, сколько секунд приходится на каждый цикл? Давайте это запишем. Сколько циклов в секунду я произвожу? То есть, сколько секунд приходится на каждый цикл? Сколько секунд приходится на каждый цикл? Так что период, например, может составлять 5 секунд на один цикл. Или, возможно, 2 секунды. Но сколько циклов происходит в секунду? Зададим противоположный вопрос. Не сколько секунд занимает подъём вверх, спуск вниз и возврат к середине. А сколько в каждую секунду умещается циклов спуска, подъёма и возврата? Сколько циклов происходит в секунду? Это свойство, противоположное периоду. Период обычно обозначается прописным Т. Это частота. Запишем. Частота. Она обычно обозначается строчным f. Она характеризует число колебаний в секунду. Так что, если полный цикл занимает 5 секунд, это значит, что в секунду у нас будет происходить 1/5 цикла. Я просто перевернул вот это соотношение. Это вполне логично. Потому что период и частота – обратные друг другу характеристики. Это – сколько секунд в цикле? Сколько времени нужно на подъём, спуск и возврат? А это – сколько спусков, подъёмов и возвратов в одной секунде? Так что они обратны друг другу. Можно сказать, что частота равна отношению единицы к периоду. Или период равен отношению единицы к частоте. Так, если верёвка вибрирует с частотой, скажем, 10 циклов в секунду… И, кстати, единица измерения частоты - это герц, так что запишем это как 10 герц. Вы, наверное уже слышали нечто подобное. 10 Гц означает просто 10 циклов в секунду. Если частота - это 10 циклов в секунду, то период равен ее отношению к единице. Делим 1 на 10 секунд, что вполне логично. Если верёвка может 10 раз за секунду подняться, опуститься, и вернуться в нейтральное положение, значит за 1/10 секунды она сделает это один раз. Ещё нас интересует, как быстро волна распространяется в данном случае вправо? Если я тяну за левый конец верёвки, как быстро она двигается вправо? Это скорость. Чтобы узнать это, нам нужно вычислить, какое расстояние волна проходит за один цикл. Или за один период. После того как я дернул один раз, как далеко уйдёт волна? Каково расстояние от этой точки на нейтральном уровне до этой точки? Это называется длина волны. Длина волны. Ее можно определить множеством способов. Можно сказать, что длина волны – это расстояние, которое проходит начальный импульс за один цикл. Или что это расстояние от одной высшей точки до другой. Это тоже длина волны. Или расстояние от одной подошвы до другой подошвы. Это тоже длина волны. Но в общем длина волны – это расстояние между двумя одинаковыми точками волны. От этой точки до этой. Это тоже длина волны. Это расстояние между началом одного полного цикла и его завершением в точно такой же точке. При этом, когда я говорю про одинаковые точки, эта точка не считается. Потому что в данной точке, хотя она в той же позиции, волна опускается. А нам нужна точка, где волна находится в той же самой фазе. Посмотрите, здесь идет движение вверх. Так что нам нужна фаза подъёма. Это расстояние – не длина волны. Чтобы пройти одну длину, нужно пройти в ту же самую фазу. Нужно, чтобы движение было в том же направлении. Вот это тоже длина волны. Итак, если мы знаем, какое расстояние волна проходит за один период… Давайте запишем: длина волны равна расстоянию, которое проходит волна за один период. Длина волны равна расстоянию, которое проходит волна за один период. Или, можно сказать, за один цикл. Это одно и то же. Потому что период – это время, за которое волна завершает один цикл. Один подъём, спуск и возврат к нулевой точке. Так что, если мы знаем расстояние и время, за которое волна его проходит, то есть период, как мы можем вычислить скорость? Скорость равна отношению расстояния ко времени движения. Скорость - это отношение расстояния ко времени движения. И для волны скорость можно было бы обозначить как вектор, но это, я думаю, и так понятно. Итак, скорость отражает то, какое расстояние волна проходит за период? А само расстояние – это длина волны. Волновой импульс пройдёт ровно столько. Такой будет длина волны. Итак, мы проходим это расстояние, и сколько времени это занимает? Это расстояние проходится за период. То есть, это длина волны, делённая на период. Длина волны, делённая на период. Но мы уже знаем, что отношение единицы к периоду - это то же самое, что и частота. Так что можно записать это как длину волны… И, кстати, важный момент. Длина волны обычно обозначается греческой буквой лямбда. Так что, можно сказать, скорость равна длине волны, делённой на период. Что равно длине волны, умноженной на единицу, делённую на период. Мы только что выяснили, что отношение единицы к периоду - это то же самое, что частота. Так что скорость равна произведению длины волны и частоты. Таким образом, вы решите все основные задачи, с которыми можно столкнуться в теме волн. Например, если нам дано, что скорость, равна 100 метров в секунду и направлена вправо… Сделаем такое предположение. Скорость - это вектор, и нужно указывать её направление. Пусть частота будет равна, скажем, 20 циклов в секунду, это то же самое, что 20 Гц. Итак, еще раз, частота будет равна 20 циклов в секунду или 20 Гц. Представьте, что вы смотрите в маленькое окно и видите только эту часть волны, только эту часть моей верёвки. Если вы знаете про 20 Гц, то вы знаете, что за 1 секунду вы увидите 20 спусков и подъёмов. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13... За 1 секунду вы увидите, что волна поднимется и опустится 20 раз. Вот что значит частота в 20 Гц, или 20 циклов в секунду. Итак, нам дана скорость, дана частота. Какова будет длина волны? В этом случае, она будет равна… Вернёмся к скорости: скорость равна произведению длины волны и частоты, правда? Разделим обе части на 20. Кстати, давайте проверим единицы измерения: это метры в секунду. Получится: λ умножить на 20 циклов в секунду. λ умножить на 20 циклов в секунду. Если мы разделим обе части на 20 циклов в секунду, то получим 100 метров в секунду умножить на 1/20 секунды за цикл. Тут остается 5. Тут 1. Получаем 5, секунды сокращаются. И мы получаем 5 метров в цикл. 5 метров за цикл в данном случае и будет длиной волны. 5 метров в цикл. Замечательно. Можно было бы сказать, что это 5 метров за цикл, но длина волны предполагает, что имеется в виду расстояние, пройденное за цикл. В этом случае, если волна распространяется вправо со скоростью 100 метров в секунду, и это частота (мы видим, что волна колеблется вверх-вниз 20 раз в секунду), то это расстояние, должно равняться 5 метрам. Точно так же можно вычислить период. Период равен отношению единицы к частоте. Он равен 1/20 секунды за цикл. 1/20 секунды за цикл. Я не хочу, чтобы вы запоминали формулы, я хочу, чтобы вы поняли их логику. Надеюсь, это видео вам помогло. Используя формулы, вы можете ответить почти на любой вопрос, если есть 2 переменные и нужно вычислить третью. Надеюсь, это окажется полезным для вас. Subtitles by the Amara.org community

Длина волны - пространственный период волнового процесса

Длина волны в среде

В оптически более плотной среде (слой выделен темным цветом) длина электромагнитной волны сокращается. Синяя линия - распределение мгновенного (t = const) значения напряженности поля волны вдоль направления распространения. Изменение амплитуды напряженности поля, обусловленное отражением от границ раздела и интерференцией падающей и отраженных волн, на рисунке условно не показано.

Волна представляет собой возмущение материи, которое, распространяясь в пространстве, переносит энергию без переноса самой материи. Каждая волна имеет определенные характеристики. Одной из важных характеристик процессов возмущения является длина волны, формула для расчета которой приводится в статье.

Виды волн

Все волны классифицируют по их физической природе, по типу движения частиц материи, по их периодичности и по способу распространения в пространстве.

Согласно типу движения частиц материи при распространении в ней волны выделяют следующие виды:

  • Поперечные волны - это такой тип возмущения, при котором частицы материи колеблются в направлении, которое перпендикулярно направлению распространения волны. Примером поперечной волны является свет.
  • Продольные волны - это волны, в которых частицы материи колеблются в направлении распространения волны. Звук является хорошим примером продольной волны.

Согласно физической природе выделяют следующие типы волн:

  • Механические. Этому типу волн необходимо вещество, чтобы они возникли, то есть твердая, жидкая или газообразная среда. Примером механических волн являются волны на море.
  • Электромагнитные. Этот тип волн не нуждается в веществе для своего распространения, а может распространяться в вакууме. Ярким примером электромагнитных волн являются радиоволны.
  • Гравитационные. Эти волны приводят к возмущению пространства-времени. Порождают такие волны крупные космические объекты, например, двойная звезда, которая вращается вокруг общего центра тяжести.

В соответствии с размерностью волны они могут быть:

  • Одномерные, то есть такие, которые распространяются в одном измерении, например, вибрация веревки.
  • Двумерные или поверхностные. Эти волны распространяются в двух измерениях, например, волны на поверхности воды.
  • Трехмерные или сферические. Эти волны распространяются в трех измерениях, например, свет или звук.

В соответствии с периодичностью волны можно сказать, что существуют:

  • Периодические возмущения, которые отличаются строго повторяющимися характеристиками через определенный промежуток времени, например, звуковые волны.
  • Не периодические, такие волны не повторяют своих характеристик, через определенные интервалы времени, например, волны электрокардиограммы.

Физические характеристики волны

Волна характеризуется 6 параметрами, из которых только 3 являются независимыми, остальные выводятся из этих трех по соответствующим формулам:

  1. Длина волны L - расстояние между двумя максимумами волны.
  2. Высота H - вертикальное расстояние между максимумом и минимумом волны.
  3. Амплитуда - величина, равная половине высоты.
  4. Период T - время, за которое два максимума или два минимума волны пройдут через одну и ту же точку пространства.
  5. Частота - величина обратная периоду волны, то есть она описывает количество максимумов или минимумов, которые проходят через конкретную точку пространства за единицу времени.
  6. Скорость - величина, характеризующая распространение волны. Она вычисляется по формуле: длина волны делить на период, то есть v = L/T.

Независимыми характеристиками являются, например, длина волны, период и ее амплитуда.

Длина волны

Эта характеристика содержит информацию о волне, которая во многом описывает ее свойства. В физике длина волны определяется как расстояние между двумя ее максимумами (минимумами), или в более общем случае как расстояние между двумя точками, которые колеблются в одной фазе. Под фазой волны понимается мгновенное состояние каждой точки волны. Понятие "фаза" имеет смысл только для периодических Длина волны обычно обозначается греческой буквой λ (лямбда).

В физике формула для длины волны зависит от начальной информации, которая имеется о данном колебании. Например, в случае электромагнитных колебаний можно знать частоту и скорость распространения волны, а затем для вычисления длины волны применить обычную формулу расчета, либо можно знать энергию отдельного фотона, тогда уже следует применять специфическую формулу именно для энергии.

Синусоидальные волны

Согласно теореме Фурье, любая периодическая волна может быть представлена суммой синусоидальных волн различной длины. Эта теорема позволяет изучать каждую периодическую волну благодаря изучению ее синусоидальных компонентов.

Для синусоидальной волны с частотой f, периодом T и скоростью распространения v формула длины волны имеет вид: λ = v/f = v*T.

Скорость распространения волны зависит от типа среды, в которой происходит волновой процесс, а также от частоты колебаний. Скорость распространения электромагнитной волны в вакууме является величиной постоянной и приблизительно равна 3*10 8 м/с.

Звуковые волны

Этот тип механических волн порождается за счет локального изменения давления в веществе, возникающего при колебательных процессах. Например, в воздушной среде речь идет о разряженных и сжатых областях, которые распространяются в виде сферической волны от порождающего их источника. Этот тип волн является периодическим, поэтому формула для длины звуковой волны является такой же, как и для синусоидальной.

Отметим, что в жидкостях и газах могут распространяться только продольные волны, поскольку в этих средах не возникает упругой силы при сдвиге слоев вещества относительно друг друга, в то время как в твердом теле помимо продольных, могут существовать и поперечные волны.

Скорость звуковых волн в различных средах

Скорость распространения таких волн определяется характеристиками колебательной среды: ее давлением, температурой и плотностью вещества. Поскольку элементарные частицы, составляющие твердые тела, находятся ближе друг к другу, чем эти частицы в жидкостях, то такая структура твердого вещества позволяет передавать колебательную энергию через него быстрее, чем через жидкость, поэтому скорость распространения волны в них больше. По этой же причине скорость звука в жидкостях выше, чем в газах.

Данные о скорости звука в некоторых средах:

В случае воздуха отметим, что Ньютоном была выведена формула для скорости звука в этой среде в зависимости от температуры, которая впоследствии была модифицирована Лапласом. Эта формула имеет вид: v = 331+0,6*t ºC.

Таким образом, формула для длины звуковой волны с частотой f в воздухе при 25 ºC приобретет вид: λ = v/f = 346/f.

Электромагнитные волны

В отличие от механических волн, природа которых заключается в возмущении вещества, в котором они распространяются, электромагнитные волны не требуют материи для своего распространения. Они возникают по причине двух эффектов: во-первых, переменное магнитное поле создает электрическое поле, во-вторых, переменное электрическое поле создает магнитное поле. Осциллирующие магнитное и электрическое поля направлены перпендикулярно друг к другу и перпендикулярно к направлению движения волны, поэтому по своей природе электромагнитные волны являются поперечными.

В вакууме эти волны движутся со скоростью 3*10 8 м/с и могут иметь различные значения частоты, поэтому длина электромагнитной волны выражается в виде: λ = v/f = 3*10 8 /f, где f - частота колебаний.

Спектр электромагнитного излучения

Спектр электромагнитного излучения представляет собой совокупность всех длин электромагнитных волн. Различают следующие части спектра:

  • Радиоэлектрическое излучение. Длина волны спектра для этого излучения составляет от нескольких сантиметров до тысяч километров. Используются эти волны в телевидении и различных типах связи.
  • Инфракрасное излучение. Это тепловое излучение имеет длины волн порядка нескольких микрометров.
  • Видимый свет. Это та часть спектра, которую человеческий глаз способен различать. Его длина волн находится в пределах от 400 нм (синий) до 700 нм (красный).
  • Ультрафиолетовый спектр. Его длины волн лежат в пределах 15-400 нм.
  • Рентгеновское излучение. Используется главным образом в медицине. Их длина волны лежит в области 10 нм - 10 пм. Источником их излучения являются колебания электронов в атомах.
  • Гамма-лучи. Это самая высокочастотная часть спектра, с длиной волны меньше 10 пк. Гамма-лучи обладают огромной проникающей способностью через любое вещество. Порождаются они в результате процессов, происходящих в ядре атома.

Расчет длины волны через энергию фотона

Очень часто в физике возникают задачи, которые ставят вопрос, чему равна длина волны для фотона, имеющего энергию E. Для решения такого рода задач следует использовать следующую формулу: E=h*c/λ, где c - скорость движения фотона, h - постоянная Планка, которая равна 6,626*10 -34 Дж*с.

Из приведенной формулы получим длину волны фотона: λ = h*c/E. Например, пусть энергия фотона E = 2,88*10 -19 Дж, а фотон движется в вакууме, то есть c = 3*10 8 м/с. Тогда получаем: λ = h*c/E = 6,626*10 -34 *3*10 8 /2,88*10 -19 = 6,90*10 -7 м = 690 нм. Таким образом, этот фотон имеет длину волны, которая лежит вблизи верхней границы видимого спектра, и будет восприниматься человеком, как красный луч света.

Абсолютно все в этом мире происходит с какой-либо скоростью . Тела не перемещаются моментально, для этого требуется время. Не являются исключением и волны, в какой бы среде они не распространялись.

Скорость распространения волны

Если вы бросите камень в воду озера, то возникшие волны дойдут до берега не сразу. Для продвижения волн на некоторое расстояние необходимо время, следовательно, можно говорить о скорости распространения волн.

Скорость волны зависит от свойств среды, в которой она распространяется. При переходе из одной среды в другую, скорость волн меняется. Например, если вибрирующий железный лист засунуть концом в воду, то вода покроется рябью маленьких волн, однако скорость их распространения будет меньше, чем в железном листе. Это несложно проверить даже в домашних условиях. Только не порежьтесь о вибрирующий железный лист...

Длина волны

Существует еще одна важная характеристика это длина волны. Длина волны это такое расстояние, на которое распространяется волна за один период колебательных движений . Легче понять это графически.

Если зарисовать волну в виде рисунка или графика, то длиной волны будет являться расстояние между любыми ближайшими гребнями либо впадинами волны, либо между любыми другими ближайшими точками волны, находящимися в одинаковой фазе.

Так как длина волны это расстояние, пройденное ею, то и найти эту величину можно, как и любое другое расстояние, умножив скорость прохождения на единицу времени. Таким образом, длина волны связана со скоростью распространения волны прямо пропорционально. Найти длину волны можно по формуле:

где λ длина волны, v скорость волны, T период колебаний.

А учитывая, что период колебаний обратно пропорционален частоте этих же колебаний: T=1⁄υ, можно вывести связь скорости распространения волны с частотой колебаний :

v=λυ .

Частота колебаний в разных средах

Частота колебаний волн не меняется при переходе из одной среды в другую. Так, например, частота вынужденных колебаний совпадает с частотой колебаний источника. Частота колебаний не зависит от свойств среды распространений. При переходе из одной среды в другую меняется лишь длина волны и скорость ее распространения.

Эти формулы справедливы как для поперечных, так и для продольных волн. При распространении продольных волн длина волны будет расстоянием между двумя ближайшими точками с одинаковым растяжением или сжатием. Она также будет совпадать с расстоянием, пройденным волной за один период колебаний, поэтому формулы будут полностью подходить и в этом случае.

При изучении этого раздела следует иметь в виду, что колебания различной физической природы описываются с единых математических позиций. Здесь надо четко уяснить такие понятия, как гармоническое колебание, фаза, разность фаз, амплитуда, частота, период колебани.

Надо иметь в виду, что во всякой реальной колебательной системе есть сопротивления среды, т.е. колебания будут затухающими. Для характеристики затухания колебаний вводится коэффициент затухания и логарифмический декремент затухани.

Если колебания совершаются под действием внешней, периодически изменяющейся силы, то такие колебания называют вынужденными. Они будут незатухающими. Амплитуда вынужденных колебаний зависит от частоты вынуждающей силы. При приближении частоты вынужденных колебаний к частоте собственных колебаний амплитуда вынужденных колебаний резко возрастает. Это явление называется резонансом.

Переходя к изучению электромагнитных волн нужно четко представлять, что электромагнитная волна - это распространяющееся в пространстве электромагнитное поле. Простейшей системой, излучающей электромагнитные волны, является электрический диполь. Если диполь совершает гармонические колебания, то он излучает монохроматическую волну.

Таблица формул: колебания и волны

Физические законы, формулы, переменные

Формулы колебания и волны

Уравнение гармонических колебаний:

где х - смещение (отклонение) колеблющейся величины от положения равновесия;

А - амплитуда;

ω - круговая (циклическая) частота;

α - начальная фаза;

(ωt+α) - фаза.

Связь между периодом и круговой частотой:

Частота:

Связь круговой частоты с частотой:

Периоды собственных колебаний

1) пружинного маятника:

где k - жесткость пружины;

2) математического маятника:

где l - длина маятника,

g - ускорение свободного падения;

3) колебательного контура:

где L - индуктивность контура,

С - емкость конденсатора.

Частота собственных колебаний:

Сложение колебаний одинаковой частоты и направления:

1) амплитуда результирующего колебания

где А 1 и А 2 - амплитуды составляющих колебаний,

α 1 и α 2 - начальные фазы составляющих колебаний;

2) начальная фаза результирующего колебания

Уравнение затухающих колебаний:

е = 2,71... - основание натуральных логарифмов.

Амплитуда затухающих колебаний:

где А 0 - амплитуда в начальный момент времени;

β - коэффициент затухания;

Коэффициент затухания:

колеблющегося тела

где r - коэффициент сопротивления среды,

m - масса тела;

колебательного контура

где R - активное сопротивление,

L - индуктивность контура.

Частота затухающих колебаний ω:

Период затухающих колебаний Т:

Логарифмический декремент затухания:

Связь логарифмического декремента χ и коэффициента затухания β:

>>Физика: Скорость и длина волны

Каждая волна распространяется с какой-то скоростью. Под скоростью волны понимают скорость распространения возмущения. Например, удар по торцу стального стержня вызывает в нем местное сжатие, которое затем распространяется вдоль стержня со скоростью около 5 км/с.

Скорость волны определяется свойствами среды, в которой эта волна распространяется . При переходе волны из одной среды в другую ее скорость изменяется.

Помимо скорости, важной характеристикой волны является длина волны. Длиной волны называется расстояние, на которое распространяется волна за время, равное периоду колебаний в ней.

Направление распространения воины

Поскольку скорость волны - величина постоянная (для данной среды), то пройденное волной расстояние равно произведению скорости на время ее распространения. Таким образом, чтобы найти длину волны, надо скорость волны умножить на период колебаний в ней :

Выбрав направление распространения волны за направление оси х и обозначив через у координату колеблющихся в волне частиц, можно построить график волны . График синусоидальной волны (при фиксированном времени t) изображен на рисунке 45.

Расстояние между соседними гребнями (или впадинами) на этом графике совпадает с длиной волны.

Формула (22.1) выражает связь длины волны с ее скоростью и периодом. Учитывая, что период колебаний в волне обратно пропорционален частоте, т.е. Т=1/v , можно получить формулу, выражающую связь длины волны с ее скоростью и частотой:

Полученная формула показывает, что скорость волны равна произведению длины волны на частоту колебаний в ней .

Частота колебаний в волне совпадает с частотой колебаний источника (так как колебания частиц среды являются вынужденными) и не зависит от свойств среды, в которой распространяется волна.При переходе волны из одной среды в другую ее частота не изменяется, меняются лишь скорость и длина волны.

??? 1. Что понимают под скоростью волны? 2. Что такое длина волны? 3. Как длина волны связана со скоростью и периодом колебаний в волне? 4. Как длина волны связана со скоростью и частотой колебаний в волне? 5. Какие из следующих характеристик волны изменяются при переходе волны из одной среды в другую: а) частота; б) период; в) скорость; г) длина волны ?

Экспериментальное задание . Налейте воду в ванну и посредством ритмичных касаний воды пальцем (или линейкой) создайте на ее поверхности волны. Используя разную частоту колебаний (например, касаясь воды один и два раза в секунду), обратите внимание на расстояние между соседними гребнями волн. При какой частоте колебаний длина волны больше?

С.В. Громов, Н.А. Родина, Физика 8 класс

Отослано читателями из интернет-сайтов

Полный список тем по классам, тесты физика бесплатно, календарный план согласно школьной программы физика, курсы и задания с физики для 8 класса, библиотека рефератов , готовые домашние задания

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки